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Abstract

Systematic reviews (SRs) inform evidence-based decision making. Yet, they take over a year to complete, are
prone to human error, and face challenges with reproducibility; limiting access to timely and reliable information.
We developed otto-SR, an end-to-end agentic workflow using large language models (LLMs) to support and
automate the SR workflow from initial search to analysis. We found that otto-SR outperformed traditional dual
human workflows in SR screening (otto-SR: 96.7% sensitivity, 97.9% specificity; human: 81.7% sensitivity, 98.1%
specificity) and data extraction (otto-SR: 93.1% accuracy; human: 79.7% accuracy). Using otto-SR, we reproduced
and updated an entire issue of Cochrane reviews (n=12) in two days, representing approximately 12 work-years
of traditional systematic review work. Across Cochrane reviews, otto-SR incorrectly excluded a median of 0
studies (IQR 0 to 0.25), and found a median of 2.0 (IQR 1 to 6.5) eligible studies likely missed by the original
authors. Meta-analyses revealed that otto-SR generated newly statistically significant conclusions in 2 reviews
and negated significance in 1 review. These findings demonstrate that LLMs can autonomously conduct and
update systematic reviews with superhuman performance, laying the foundation for automated, scalable, and
reliable evidence synthesis.

1 Introduction

Systematic reviews (SRs) are the foundation of evidence-based decision-making. However, SRs are incredibly
resource-intensive, typically taking over 16 months and costing upwards of $100,000 to complete1,2. Delays
in completing SRs can have major consequences for evidence-based practice, including prolonged use of
ineffective or harmful treatments initially supported by less rigorous evidence3.

While several tools have been developed to accelerate SRs4,5, none are capable of full automation with
human-level accuracy. However, large language models (LLMs) offer new avenues to achieve automation with
their ability to process and reason about natural language. We previously demonstrated that LLMs can achieve
high screening performance6. Other recent work has demonstrated promise for LLMs in data extraction7,8,
though these studies rely on self-defined reference standards and evaluate on small datasets.

We introduce an LLM-based workflow (otto-SR) to support automated and human-in-the-loop SR workflows,
from initial search to data analysis. Our framework uses GPT-4.1 (OpenAI) for screening articles and o3-
mini-high (OpenAI) for data extraction, targeting tasks that typically consume the majority of researcher time
and effort. We evaluate our workflow on these core SR components, article screening and data extraction,
with performance comparisons to traditional human workflows and other SR automation tools. To assess
real-world utility, we reproduced and updated an entire issue of Cochrane reviews (n=12) using otto-SR, in
under two days. otto-SR is designed to work alongside researchers, requiring only a protocol (objectives,
eligibility criteria), search results, and defined extraction variables.
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Figure 1: An automated systematic review workflow using LLMs. Infographic displaying the end-to-end SR
process for humans (grey) and otto-SR (green).

2 An agentic workflow for systematic review automation

The gold-standard systematic review workflow begins with a comprehensive search to capture all potentially
relevant citations9. These citations undergo abstract and full-text screening by two human reviewers indepen-
dently, with disagreements resolved by a third reviewer. The final set of relevant articles then undergo data
extraction by two human reviewers independently, again adjudicated by a third reviewer when discrepancies
arise. The complete human workflow is illustrated in Figure 1 (top).

otto-SR is an end-to-end LLM-based workflow supporting both fully automated and human-in-the-loop
systematic reviews. Citations identified from the original search are directly uploaded, in RIS format, to
the otto-SR screening agent, which uses GPT-4.1 to screen abstract and full-text articles as a standalone
reviewer. The resulting set of included articles is then fed into the otto-SR extraction agent, which performs
data extraction with the o3-mini-high model. For full-text screening and data extraction, retrieved PDFs are
processed by Gemini 2.0 flash and converted into structured Markdown (MD) files for downstream tasks. An
overview of the otto-SR workflow is provided in Figure 1 (bottom).

3 LLMs achieve state-of-the-art SR screening performance

We previously found that GPT4-preview could achieve high screening performance with effective prompting
strategies6. Aiming to improve on these findings, we developed a screening agent leveraging GPT-4.1, a model
which excels at instruction following10,11, paired with optimized prompting strategies6, to screen articles at
abstract and full-text stages. The agent was prompted using the original, unaltered objectives and eligibility
criteria from each respective review (Supplementary Notes). Full-text article PDFs were converted into
markdown format with the Gemini 2.0 Flash model for full-text screening.

We evaluated the performance of the otto-SR screening agent on the complete original search across five
reviews (n=32,357 citations) covering four Oxford Centre for Evidence-Based Medicine (CEBM) question types:
prevalence, diagnostic test accuracy, prognosis, intervention benefits (Extended Data Table 1). Dual human
reviewers and Elicit (a commercial LLM-based SR automation software) were evaluated against a random
representative sample of records for each review (n=1,767 citations) (Methods). The reference standard for
inclusion/exclusion decisions was based on the original authors’ final decisions after full-text screening.

To validate the proficiency of our human reviewers in screening, we conducted a calibration exercise (n=400
citations) where we compared the SR screening performance of our reviewers to the original study authors12,
who had independently re-screened the same set of articles. We found that the performance of our human
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Figure 2: otto-SR screening agent (GPT-4.1) achieves superhuman screening sensitivity, specificity, and
accuracy. A. Diagram of otto-SR abstract screening agent (left), sensitivity, specificity of otto-SR screening agent,
dual human reviewers, and Elicit, for abstract screening evaluated across five reviews (middle). Weighted
averages for sensitivity and specificity across comparator groups (right). Error bars indicate 95% confidence
intervals. B. diagram of otto-SR full-text screening agent (left), sensitivity, specificity, and accuracy of otto-SR
screening agent evaluated across five reviews, and dual human reviewers for full-text screening evaluated
across five reviews (middle). Weighted average for sensitivity and specificity across otto-SR (five reviews) and
dual human (four reviews) (right). Error bars indicate 95% confidence intervals.

reviewers closely aligned with the original study authors (Our team: 80.2% sensitivity 97.7% specificity
vs. original author team: 81.3% sensitivity, 98.1% specificity) providing confidence that our reviewers were
reflective of expert-level screening (Extended Data Table 2).

At the abstract screening stage, the otto-SR screening agent achieved the highest sensitivity (weighted
sensitivity 96.6% [total range, 94.1-100.0%]) (Fig. 2, Extended Data Table 3). In comparison, Elicit (88.5%
[76.9-100%] sensitivity) and dual human reviewers (87.3% [84.1-100%] sensitivity) had lower sensitivity. Dual
human reviewers achieved the highest specificity in abstract screening (95.7% [92.5-98.7%] specificity), followed
by the otto-SR screening agent (93.9% [83.6-97.7%] specificity) and Elicit (84.2% [65.7-95.9%] specificity).

After full-text screening, the otto-SR screening agent maintained the highest sensitivity (96.2% [92.3-100%]
sensitivity), while human reviewers had a marked drop in sensitivity (63.3% [44.1-93.8%] sensitivity) (Fig. 2,
Extended Data Table 4). This decline was largely driven by poor performance on screening the “Reinfection”
review (44.1% sensitivity, 95.3% specificity), likely due to complex inclusion criteria involving test-negative
study designs, multiple interventions, and multiple time-specific outcomes. After removing this outlier review,
human reviewers achieved a weighted sensitivity of 81.7% [76.4%-93.8%]. Specificity remained high for both
the otto-SR screening agent (96.9% [90.7-98.7%] specificity) and dual human reviewers (98.1% [96.7-100.0%]
specificity). Elicit was not included in this comparison as it did not support full-text screening.
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Together, these findings suggest that the otto-SR screening agent can capture more relevant studies (true
positives) than traditional dual human screening, while maintaining comparable specificity (minimizing false
inclusions).

4 LLMs achieve state-of-the-art SR data extraction performance

Given the time-intensive nature of manual data extraction in SRs, we explored if advances in LLM reasoning
could provide a path towards automation. To this end, we developed an extraction agent using the OpenAI o3-
mini-high model13, selected for its strong scientific reasoning, robust long-context retrieval, and cost-efficiency.
In all cases, the otto-SR extraction agent was prompted with original author-defined variable descriptions.
Full-text article PDFs were also converted into markdown format with the Gemini 2.0 Flash model for data
extraction.

We evaluated the performance of the otto-SR extraction agent and Elicit in data extraction across seven
reviews (n=4,559 data points, 495 studies) (Fig. 3A, Extended Data Table 5). Dual human reviewers were
assessed on a randomly sampled subset of articles from each review based on a McNemar test sample size
approximation (n=1,453 data points, 156 studies) (Methods). Extracted variables included key descriptive and
outcome data used by the original authors for downstream analysis (see Supplementary Notes).

Data extraction accuracy was determined through an LLM-as-a-judge framework to compare AI- or human
extracted values against the original author extractions (Methods). However, given the known variability
in dual human data extraction accuracy (reported rates: 65.8-85.5%)14–19, original author-extracted values
were not treated as a definitive gold standard (Fig. 3B). Instead, we applied a blinded adjudication process
to resolve discrepancies between otto-SR extraction and the original Cochrane authors. A panel of blinded

Figure 3: otto-SR extraction agent (o3-mini-high) performance on systematic review data extraction. A. Bar
graph displaying data extraction accuracy of the otto-SR extraction agent (green) (4,459 data points), Elicit (teal)
(4,459 data points), and dual human reviewers (grey) (1,453 data points) across 7 different systematic reviews.
Error bars represent 95% confidence intervals. Shading represents pre- (lighter) and post- (darker) human
adjudicated correction. B. Dot plot depicting literature-derived human reviewer performance comparison
against human reviewers in this study. Dots represent mean value and upper and lower bars represent range.
C. Bar graph depicting dual human adjudicator decisions for values marked as incongruent between original
review and otto-SR extraction agent, Elicit, and dual human. Blue represents the newly conducted review being
correct, while tan represents the original study authors being correct. Error bars represent 95% confidence
intervals.
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human reviewers compared randomized pairs of responses (otto-SR vs. original author) and selected the
most accurate value (see Methods). We used these judgements to construct a corrected gold standard for
performance evaluations.

Across all seven reviews, the otto-SR extraction agent achieved an average weighted accuracy of 93.1%
(91.1-97.0%), outperforming both dual human reviewers at 79.7% (69.1-91.0%), and Elicit at 74.8% (58.8-83.1%)
(Fig. 3A, Extended Data Figure 6). When otto-SR extracted different values to the original authors, the blinded
human reviewer panel sided with the otto-SR data extraction agent in 69.3% of cases (Fig. 3C). In contrast, for
discrepancies between original authors and our two human extractors or Elicit, the blinded reviewer panel
sided with the dual human extractors in 28.1% of cases, and Elicit in 22.4% of cases (Fig. 3C).

In the 6.9% of cases where the otto-SR extraction agent was incorrect, post-hoc analysis revealed that 0.83%
(39/4459) of data points were inaccessible to the model (supplementary files or data obtained through data
request), 0.67% (30/4459) resulted from parsing errors, and 0.49% (22/4459) were cases where neither the
otto-SR data extraction agent nor original author extraction was correct (Extended Data Figure 1).

5 An agentic workflow of LLMs can rapidly reproduce and update
reviews

Given the high performance of our screening and extraction agents, we combined them into an agentic
workflow, dubbed otto-SR (Fig. 4A). To evaluate the real-world applicability of otto-SR, we conducted a
reproducibility assessment of a complete issue of SRs published in the Cochrane Database of Systematic
Reviews.

We randomly selected the April 2024 issue of the Cochrane Database (Extended Data Table 7). Of the 14
reviews in this issue, one review was excluded due to a lack of publicly available data, and a second review was
excluded due to the absence of a reproducible search strategy (Extended Data Table 7). For the 12 remaining
reviews, we reproduced their reported search strategies, updating searches to May 8, 2025, and identified
146,276 citations. These citations were deduplicated and then screened at both the abstract and full-text stages
using the otto-SR screening agent with original Cochrane review eligibility criteria (Supplementary Notes).

To ensure a focused and interpretable comparison, we diverged from Cochrane methodology in one key
respect. Cochrane reviews typically include all studies, regardless of whether they report the review’s
primary outcome, to allow for all comparisons based on the available data (e.g., all intervention and outcome
combinations). In contrast, we focused our analysis to reproduce each review’s predefined primary outcome.
This constraint provided a clearer distinction for study eligibility.

The otto-SR screening agent correctly identified all included studies (n=64) across the 12 Cochrane reviews.
Citations passing screening then had primary outcome data extracted using the otto-SR extraction agent and
original Cochrane study variable definitions (Supplementary Notes). otto-SR extraction results with missing
primary outcome values, duplicate studies, or missing intervention-comparator groups were programmatically
excluded (Methods). After this process, otto-SR incorrectly excluded a median of 0 articles (IQR 0 to 0.25)
(Extended Data Table 8). Incorrect exclusions were due to LLM-inaccessible supplementary data (n=2), or a
failure to extract reported outcome values when present (n=2).

After filtering our results to align with the original search cutoffs, we identified 54 additional eligible studies
through otto-SR (median 2, IQR: 1 to 6.25 per review) that were likely missed in the original Cochrane reviews
(Methods). otto-SR also incorrectly included 10 false positive articles after human review; however 9/10 may
have contained relevant data available through additional author correspondence. Updating the search to May
8, 2025 identified another 14 new eligible studies (total n = 64, median 2.5, IQR 1 to 7.25 per review) (Extended
Data Table 8). The updated search identified two additional false positive studies, one of which may have
contained relevant data.

Extracted data was subsequently meta-analyzed using the same analytical methods as the original reviews,
across three comparisons: (1) ‘Matched’ where otto-SR was restricted to the same set of articles as included in
the original Cochrane analysis. (2) ‘Expanded’ which included all eligible studies identified by otto-SR, filtered
to the original search cutoff date. (3) ‘Update’ which evaluated all articles with an updated May 8, 2025 search
cutoff.

Given potential data extraction errors by original Cochrane authors and otto-SR, we derived corrected values
for each comparison through dual human review. This also included removal of false positive articles and
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Figure 4: Evaluating otto-SR for automation of systematic reviews. A. Infographic depicting use of otto-SR
for systematic review automation in a complete edition of the Cochrane Database of Systematic Reviews (n =
12). B. Forest plots depicting differences between otto-SR (green), original Cochrane study authors (purple),
and corrected standard (gold). Each row is representative of meta-analyzed estimates derived in a systematic
review. Error bars represent 95% confidence interval, MD = Mean Difference, OR = Odds Ratio, RR = Risk
Ratio, SMD = Standardized Mean Difference. The matched comparison (left) shows estimates derived from
articles only included in the original Cochrane reviews. The expanded comparison (middle) displays estimates
derived from additional articles identified by otto-SR falling within the original search dates. The update plot
(right) displays estimates derived from all articles found by otto-SR in a May 8 2025 search. *otto-SR discovered
a new treatment group, mixed oral / enteral nutrition, which was not found in the original Cochrane review,
consequently no matched analysis was conducted. **workplace citations were provided by original study
authors due to challenges with the electronic search, consequently no updated search was performed.
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addition of false negative articles. For each review, we also generated corresponding Cochrane meta-analyses
using the original author-extracted data. All original Cochrane data, otto-SR extracted data, and corrected data
(including notes) are provided in Supplementary Data 1.

In the ‘Matched’ comparison group, otto-SR produced meta-analyzed effect estimates which had overlapping
95% CIs with both the original Cochrane data and corrected datasets across all reviews (Fig. 4B, left; Extended
Data Table 9). In the ‘Expanded’ analysis, two reviews (nutrition, depression) yielded new statistically
significant effect estimates (Fig. 4B, middle), while the estimate from one review (alcohol) lost statistical
significance compared to the original Cochrane estimates (Fig. 4B, middle). These trends were consistent in
the corrected ‘Expanded’, otto-SR ‘updated’, and the corrected ‘Update’ analyses (Fig. 4B, right).

One illustrative example comes from the nutrition review, where otto-SR identified 5 additional studies.
This led to the new finding that preoperative immune-enhancing supplementation before gastric surgery is
associated with a one-day reduction in mean hospital stay compared to usual care (otto-SR: MD -1.20 [95% CI
-2.28 to -0.11], 9 studies; Cochrane: MD -0.19 [-1.44 to 1.07], 4 studies). Detailed effect estimates and 95% CIs
are provided for all groups and comparisons are provided in Extended Data Table 9.

6 Discussion

Systematic review workflows are often hindered by the time- and labor-intensive demands of screening and
data extraction. In this study, we demonstrate that otto-SR, an end-to-end SR automation pipeline, powered by
GPT 4.1 and o3-mini-high, can accelerate these steps without compromising performance.

Our findings highlight several opportunities for LLMs to be implemented in systematic reviews. First,
workflows like otto-SR can be used to update existing systematic reviews by leveraging their original published
protocols. This provides a unique advantage: it enables direct comparison of screening and extraction results
against the original review, facilitating validation and assessments of reproducibility. Second, the ability to
rapidly process articles opens the door to truly living systematic reviews–where updates could be performed
monthly, weekly, or even daily–ensuring constant access to the most current evidence. Third, otto-SR may
be used to generate de novo reviews, provided that researchers develop clear, detailed protocols akin to
those pre-registered in PROSPERO. In all cases, structured and clear methodology is essential for ensuring
interpretability, reproducibility, and high-quality automation.

Our Cochrane reproducibility assessment highlighted common reproducibility challenges. All 12 reviews
had issues with search reproducibility and 2 reviews lacked methodological clarity. These findings align
with prior work by Rethlefsen et al20, who found that only 1% of reviews have a fully reproducible search
strategy. Previous studies have also shown that reproducibility failures can occur at every stage of the SR
process20–24. To address these challenges, we suggest that published SRs include the following : (i) the complete
search strategy; (ii) raw search files (e.g., RIS file); (iii) raw data extraction outputs with data dictionaries;
(iv) list of data procured via author correspondence; and (v) the complete code used for analyses. Current
reporting guidelines for systematic reviews (PRISMA) endorse most, but not all of these points25. While
Cochrane reviews routinely provide such materials, most other SRs do not, limiting reproducibility and
external validation.

The performance of LLMs in conducting evidence synthesis, as demonstrated in this study, also highlights
an opportunity to reconsider how scientific content is published. While most research is written for human
readers, the rise of LLM-supported evidence curation highlights the value of making studies machine-readable.
Using structured formats like markdown or html (as now offered by Arxiv), and providing raw numerical
data from figures could support this new paradigm.

Our work has several limitations. First, although our analysis was validated across a wide range of SRs,
further research is needed to assess the generalizability to other clinical questions and qualitative reviews.
Second, our LLM parser may have incorrectly extracted information from PDF articles. In future studies,
enhanced vision capabilities of new models may better support screening/extraction efforts. Thirdly, our
workflow was limited to the main text of articles and did not extract data from supplementary tables or figures.
While we could have manually incorporated these materials, we intentionally avoided human intervention to
test the end-to-end capabilities of our automated workflow. Fourth, due to the vast number of data points (and
their unstandardized nature), we employed an LLM-as-a-judge framework to assess data extraction accuracy.
Although this approach has been previously validated26,27, LLM judgements may still introduce occasional
errors. Fifth, we encountered instances where the original author’s decisions for data extraction appeared
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inaccurate. However, we addressed this by performing randomized and blinded adjudication, adopting best
practices seen in radiology, ophthalmology, and clinical trials28–31. This approach represented a methodological
improvement over prior work that relied on self-created ground truths7. Finally, with respect to the Cochrane
reproducibility assessment, it’s possible that content specific experts would make different article inclusion
and data extraction decisions. However, we closely adhered to each review’s protocol, contacted study authors
to clarify methodological uncertainties, and documented discrepancies.

7 Conclusion

In conclusion, our study marks a major advancement in the development of SR automation tools using LLMs.
The immediate applications of this include: rapid updates and truly ‘living’ reviews, mass assessments of
reproducibility across the SR literature, and faster de novo reviews. Future research should focus on developing
comprehensive and complete benchmarks of SRs to better support and refine automation efforts. We also
encourage research into the capabilities of LLMs for other SR workflow tasks, such as search term generation
and risk of bias assessment. The implementation of fully autonomous SRs could accelerate the synthesis of
up-to-date evidence, save thousands of hours of manual work, and provide significant benefits in medicine
and other fields.

8 Methods

8.1 Article Screening Datasets

To identify putative screening datasets, we leveraged the previously published BenchSR database of published
SRs6. In brief, this consisted of 10 distinct SRs spanning nine unique clinical domains and contained study
information (review objectives, inclusion/exclusion criteria) and the complete set of labeled ‘included’ and
‘excluded’ citations from the original search of each SR.

From the BenchSR database, we performed stratified random sampling across the four Oxford CEBM review
questions, selecting SRs for each type. Our sample included various datasets: the SeroTracker dataset32

for reviews of prevalence (calibration set adapted from Perlman-Arrow et al.12), the Reinfection33 and PA-
Outcomes34 datasets for reviews of intervention benefits, the PA-Testing35 dataset for reviews of diagnostic
test accuracy, and SVCF36 dataset for reviews of prognosis (Extended Data Table 1).

8.2 LLM Screening Methodology

We developed a novel LLM-based screening system adapted from our previously validated ScreenPrompt
approach6. Our LLM based screening agent uses the GPT-4.1 model with a 32,768-token output limit and
default parameters (temperature=1, frequency_penalty=0, presence_penalty=0, top_p=1).

For full-text screening, we implemented a PDF parsing pipeline using the Gemini 2.0 Flash model to convert
full-text documents into structured Markdown inputs given a simple prompt (Supplementary Methods),
which was then processed by GPT 4.1 for full-text screening. Full-text PDF articles were programmatically
retrieved through OpenAlex37, a comprehensive corpus of over 240 million scholarly works sourced from open
platforms such as Crossref, MAG, DataCite, HAL, PubMed, Institutional Repositories. Articles that were not
available through OpenAlex but were included after abstract screening were retrieved via institutional access.

In all instances, GPT-4.1 was prompted using the original, unaltered objectives and eligibility criteria from
each respective review (Supplementary Notes).

8.3 Article Screening Benchmarking

We evaluated screening performance using a diagnostic test accuracy (DTA) study design. Our reference
standard was the final article inclusion or exclusion decisions of the original review authors after full-text
screening. “Included” articles represented the final set of articles included in each review, and “excluded”
articles represented articles excluded from title, abstract, and full-text screening in each review.

We tested the otto-SR screening agent as a standalone reviewer across the full set of citations retrieved in
each SR (n = 32,357) (Extended Data Table 3, 4). Screening was conducted in two stages: first, an abstract-level
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screen was applied to all citations; those marked as “included” then underwent full-text screening to determine
the final set of included articles.

For comparison, we assessed the performance of Elicit (evaluated on April 12, 2025), a commercially available
systematic review automation software, and a panel of human reviewers against a representative sample
of citations from each SR. To assess sensitivity, we included all articles deemed ‘included’ in each SR (i.e.,
entire inclusion set) where possible. For specificity, we determined a minimum specificity sample size of
139 ‘excluded’ articles with Cochran’s sample size38, based on an expected specificity of 90%, 5% margin of
error, and 95% confidence level. These excluded articles were randomly sampled from each review’s pool of
non-included citations (Extended Data Table 3, 4).

To evaluate the performance of Elicit in screening, we uploaded all PDF articles for each sample into the
platform. Elicit was tested on a sample of citations, rather than the full dataset, due to its 500-record screening
limit per review. The inclusion criteria provided to Elicit was identical to the inclusion criteria provided to the
otto-SR screening agent. As Elicit does not natively support exclusion criteria, we tested both inclusion criteria
alone and inclusion criteria combined with inverse exclusion terms. Performance was higher using inclusion
criteria alone (Extended Data Table 1), so this approach was adopted. Elicit automatically retrieved titles
and abstracts, followed by screening using a default inclusion score threshold of 2.5. No full-text screening
workflow was available. All evaluations were conducted using Elicit’s paid “Pro” plan.

To evaluate the performance of humans in data extraction, we assembled a panel of four graduate-level
researchers with past SR experience (1 BSc, 3 MSc; all current MD students) to perform dual screening9. All
screening was performed independently and in duplicate. Conflicts during screening were resolved by a third
independent reviewer. Screening followed a standard end-to-end workflow: all citations were screened at the
title/abstract stage, and citations deemed eligible by reviewers were advanced to full-text screening.

8.4 Human Calibration

To verify screening proficiency, human reviewers first completed a calibration exercise using a set of citations
from SeroTracker, a comprehensive systematic review on SARS-CoV-232,39. In SeroTracker, the original
study authors conducted a study to assess internal consistency through re-screening a previously screened
dataset using the same eligibility criteria12. Our reviewers screened this same dataset, and we compared
their performance against the original SeroTracker authors’ results.The performance of our reviewers was
comparable to the original SeroTracker authors. Details are found in Extended Data Table 2.

8.5 Screening Data Analysis

We assessed the performance of the otto-SR screening agent, Elicit, and dual human reviewers by analyzing
accuracy, sensitivity, specificity; and reported true positives, true negatives, false positives, and false negatives.
We calculated 95% CIs for weighted (pooled-denominator) sensitivity and specificity using the Wilson method40

with the binom package in R.

8.6 Data Extraction Datasets

We utilized four datasets (SeroTracker, PA-Outcomes, PA-Testing, Sepsis) from the BenchSR database that
contained raw data extraction results provided by the original authors. In addition, we identified three external
SRs (CKD41, Process42, Psyc-meds43) that also provided publicly accessible raw data extraction information
(Extended Data Table 5). Variables assessed for extraction included key descriptive and outcome data used by
the original authors for downstream analysis (see Supplementary Notes).

8.7 LLM Data Extraction Methodology

We developed a novel LLM-based data extraction agent using prompting best practices. Our data extraction
agent uses the o3-mini-high model from OpenAI, high reasoning effort and a 100,000-token output limit.
The same markdown extracted from full-article PDF as used in the full-text screens were passed as inputs to
o3-mini-high for extraction. In all cases, the extraction agent was prompted with author-defined variables and
corresponding descriptions (Supplementary Notes).
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8.8 Data Extraction Benchmarking

We evaluated the performance of the otto-SR data extraction agent, Elicit, and dual human reviewers for data
extraction across all datasets. The variable definitions used for extraction are provided in the Supplementary
Notes.

For the otto-SR data extraction agent and Elicit, we used the complete set of articles with available data
extraction results. Due to its extensive size (n=2,736 included articles), the SeroTracker dataset was randomly
downsampled to 100 articles for evaluation. For the Psyc-meds dataset, only studies with published data were
included (Extended Data Table 5).

To evaluate the performance of Elicit in data extraction (evaluated on March 22, 2025), we uploaded all
articles into the Elicit data extraction platform and used the same variable descriptions provided to the otto-SR
extraction agent (Supplementary notes). All extractions were performed with the ‘high accuracy’ feature,
accessed through the Elicit ‘Pro’ paid plan. In cases where Elicit encountered an error or failed to extract data,
we retried up to a maximum of 5 times.

To evaluate the performance of humans in screening, we assembled a panel of seven graduate-level
researchers with past SR experience (3 BSc, 4 MSc; all current MD students). Human data extraction was
performed independently and in duplicate. Discrepancies were resolved by a third human reviewer. For
human data extraction, we determined sample size using a McNemar test for sample size approximation.
Using an estimated human accuracy of 80% (reported rates: 65.8-85.5%)14–19, LLM accuracy of 90%, and 95%
confidence, we determined a minimum number of 204 variables per study to be extracted. Article counts for
each testing dataset are provided in Extended Data Table 5.

Due to the unstandardized nature of data extraction results (e.g., SeroTracker review - name of immunoassay
used), we used an LLM-as-a-judge framework to programmatically determine data extraction accuracy. In this
setup, the o3-mini-high LLM was used to compare each AI- or human-extracted value to the original author
value and determine if the two were equivalent. This evaluation method has been validated in prior LLM
benchmarking efforts, including the LLM Chatbot arena26 and OpenAI’s HealthBench27.

8.9 Data Extraction Correction

Prior research has shown wide variability in the accuracy of dual human extraction, with reported rates
ranging from 65.8-85.5%14–19. As such, original author-provided values did not represent a reliable ground
truth. To address this, we conducted a blinded correction process for cases where the LLM-as-a-judge flagged
discrepancies between otto-SR extracted values and original review author extracted values. A panel of three
independent, experienced graduate-level human reviewers validated outputs. Reviewers were presented with
two anonymized and randomized responses (LLM and original author) and asked to select one of four options:
Option A correct, Option B correct, Both correct, or Neither correct. Each disagreement was evaluated in
parallel and resolved by a third independent arbitrator. The final adjudicated results were used to construct
corrected ground truth datasets. To evaluate the accuracy of otto-SR, Elicit, and dual human reviewers, we
then applied the LLM-as-a-judge framework to compare each system’s outputs against this corrected dataset.
This adjudication framework was adapted from established protocols in radiology, ophthalmology, and clinical
trials28–31.

We note a potential limitation in our validation process: when otto-SR and the original authors produced
identical values, we assumed these were correct without further adjudication. Consequently, if both sources
made the same systematic error, it would go undetected. This approach could potentially bias our evaluation
against alternative models (e.g., Elicit or dual human reviewers) that disagreed with both reference sources. To
evaluate this limitation, we performed spot checks on a random 10% sample of extractions where otto-SR and
the original authors agreed, finding no errors or inconsistencies.

We additionally performed a post-hoc review of incorrect AI outputs to classify errors as either ‘parsing
errors’ (i.e., errors with the PDF parsing pipeline), ‘inaccessible’ (i.e., data accessible only through author
correspondence or supplementary material), or ‘true errors’ (i.e., cases where the original author values were
correctly extracted).

8.10 Extraction Data Analysis

We assessed the performance of the otto-SR data extraction agent, Elicit, and human reviewers by analyzing
the total accuracy at a variable level per study. If the human adjudicator classification was “inaccessible”, the
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data point was removed from analysis for otto-SR, Elicit, and human reviewers. We calculated 95% CIs for
weighted (pooled-denominator) accuracy using the Wilson method40 with the binom package in R.

8.11 Cochrane Reproducibility

To evaluate the reliability and generalizability of our automated systematic review workflow, we conducted a
focused reproducibility assessment using an entire issue of the Cochrane Database of Systematic Reviews. Our
aim was to approximate each review’s workflow end-to-end, from literature search through to data extraction
and meta-analysis, using the otto-SR pipeline.

We selected the April 2024 issue through random sampling. Of the 14 reviews published, two were
excluded: one due to the absence of downloadable data, and another due to an irreproducible search strategy
(authors provided a search strategy to populate the Cochrane specialized register, but not for the review itself).
This left 12 eligible reviews spanning a range of clinical domains (Extended Data Table 7). The Cochrane
database was chosen for its rigorous and standardized reporting practices, public data availability, and detailed
methodological documentation.

8.12 Cochrane Database Searches

The original search strategy of each Cochrane review was reproduced using the exact terms and filters
described in the review methods. Searches were limited to institutionally accessible databases. In cases where
databases lacked precise date filtering (e.g., supporting month but not day-level granularity), we applied
post-hoc filtering to approximate the original search window (Supplementary Data 2).

After each search, we cross-referenced our list of articles with those included in the original Cochrane
reviews. Articles that were not retrievable from the original search were excluded from downstream screening,
data extraction and analysis.

8.13 Cochrane Screening

All retrieved citations underwent abstract and full-text screening with the otto-SR screening agent, prompted
with the inclusion and exclusion criteria, objectives, and review protocols from each Cochrane review
(Supplementary Notes).

To ensure a focused and interpretable comparison, we deviated from Cochrane’s inclusion practice in one
key respect. Cochrane reviews typically include all studies reporting the eligible population and intervention
of interest. This approach allows authors to explore all comparisons based on the available data (e.g., all
intervention and outcome combinations, including those not pre-specified). While valuable for comprehensive
synthesis, the generation of comparisons after screening can make study eligibility unclear.

Instead of focusing on all possible comparisons, we focused our analysis to reproduce each Cochrane
review’s primary analytical comparison. This constraint allowed for unambiguous inclusion criteria, where
studies had to meet specific predefined interventions, comparators, and outcome criteria. Citations without
a retrievable abstract or DOI/trial identifier were excluded. Screening decisions were compared against
Cochrane author decisions to calculate true positives, false negatives, false positives, and true negatives.

8.14 Cochrane Data Extraction

For all studies passing full-text screening, outcome data was extracted using the otto-SR extraction agent,
focusing exclusively on the primary outcome defined in each Cochrane review. To ensure consistency, we used
the original author-defined variable names and extraction logic (Supplementary Notes).

Data extraction also served as a secondary filter. While otto-SR achieved high specificity (~97%), for a review
of 10,000 citations, this would equate to nearly 300 false positive articles. To counteract this, studies were
programmatically excluded if they returned unavailable or unreportable values for the primary outcome (e.g.,
“na” values), were identified as duplicates, or involved ineligible intervention-comparator pairs (e.g., Drug A
vs. Drug B when only Drug A vs. placebo was eligible). This secondary filtering step helped remove residual
false positives from the screening phase, though it may have introduced occasional misclassifications (then
labeled as false negatives).
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8.15 Analysis

All meta-analyses were conducted using the metafor package in R (Code and Dataset Availability). To ensure
fair comparison, we matched the original authors’ specified meta-analytic model (random-effects, fixed-effect),
effect size metric (risk ratio, odds ratio, rate ratio, mean difference, standardized mean difference), and
continuity correction approach, where reported. We conducted four meta-analytical comparisons: (1) Cochrane
– meta-analysis using the original author-extracted data. (2) Matched – otto-SR results filtered to match the
Cochrane primary analysis study set. (3) Expanded – all eligible studies included by otto-SR under the original
search cut-off. (4) Updated – all eligible studies included by otto-SR from an updated search extending to
May 8 2025. We also derived ‘corrected’ values (see below), for the ‘matched,’ ‘expanded,’ and ‘updated’
comparisons that served as the reference ground truth for analytical comparison.

8.16 Cochrane Data Correction and Comparison

To address known concerns about the reliability of original author-extracted data, we conducted an adjudication
process to derive corrected data extraction and screening information for the ‘Matched,’ ‘Expanded,’ and
‘Updated’ analyses. For our ‘Matched’ analysis, a panel of two human reviewers compared data extraction and
screening decisions from the original Cochrane authors and the otto-SR extraction agent, selecting the correct
value through re-assessment of the source article. In our ‘Expanded’ and ‘Updated’ analysis, where Cochrane
data was not available, a panel of two human reviewers compared otto-SR data extraction and screening
decisions against original study articles, selecting the correct value through re-assessment of the source article.
Final articles included in the corrected analysis consisted of all otto-SR true positive articles, and any Cochrane
true positive articles missed by otto-SR. The extracted values in this final dataset reflected the most accurate,
reviewer-verified information and served as the reference standard for Cochrane and otto-SR performance
comparisons (Supplementary Data 1 for raw and corrected values, reviewer notes, and error classifications).

To ensure consistency and transparency, we applied standardized rules for study eligibility across analysis
sets. First, articles had to be retrievable through our reproduced search; unretrievable citations were excluded
from all otto-SR-based analyses. Second, for author data requests, we included studies in the Cochrane analysis
only if authors explicitly stated that they contacted study authors and specified which studies and outcomes
were supplemented. If a data request was suspected for a study, but the review only reported vague references
to data requests without further specification, the study was considered unverifiable and excluded from both
the Cochrane and otto-SR-corrected analyses. For instance, in the ACEi review, the authors appeared to assign
zero mortality events in studies that did not report mortality or adverse events; but did not clearly state
which studies had data requests. For such cases, we excluded those studies from the Cochrane and otto-SR
corrected analyses to avoid introducing speculative data. Suspected data requests occurred in three reviews (4
studies, Nutrition; 15 studies, ACEi; 4 studies, Depression). A high-level summary of methodological issues is
provided in Extended Data Table 7. Detailed notes for the exclusion of studies are provided in Supplementary
Data 1.

Studies with supplementary data (not extractable by otto-SR) were included in the Cochrane and corrected
analyses, thereby penalizing the model. If the data was inaccessible to otto-SR due to format limitations (e.g.,
embedded figures), the study was excluded from otto-SR analyses but retained in the Cochrane and corrected
sets. These criteria aimed to balance reproducibility, verifiability, and the practical constraints of automation.
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Extended Data Figure 1: Data extraction answer classification. Bar graph displaying answer classification
resulting from dual human adjudication across o3-mini-high, dual human extraction, and Elicit across all 7
evaluated systematic reviews.
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